A robust implementation of Axioms of Choice

Liron Cohen

Cornell University, Ithaca, NY, USA

Extending the Proofs-as-Programs Paradigm

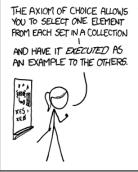
Extending the Proofs-as-Programs Paradigm

Extending the Proofs-as-Programs Paradigm

Programs Proofs How can modern notions of computation influence and contribute to formal foundations?

The Axiom of Choice

Given any collection of nonempty sets, there is a way to assign a representative element to each set in the collection



MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMUDATION.

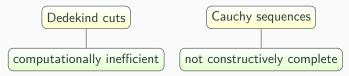
• AC unifies standard constructive representations of the reals.

Dedekind cuts

Cauchy sequences

Motivation

• AC unifies standard constructive representations of the reals.



Motivation

• AC unifies standard constructive representations of the reals.

- Unclear status in constructivism.
 - Some variants are considered trivially true due to the specific interpretation of the type constructors Σ and Π.
 - Prior constructive models of choice implicitly rely on a deterministic computation system.

 \Rightarrow Fail to extend with new computational capabilities.

Given any collection of nonempty sets, there is a way to assign a representative element to each set in the collection

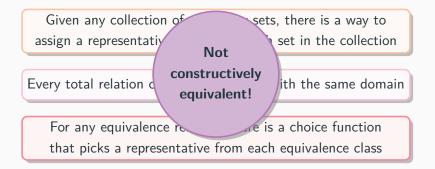
Given any collection of nonempty sets, there is a way to assign a representative element to each set in the collection

Every total relation contains a function with the same domain

Given any collection of nonempty sets, there is a way to assign a representative element to each set in the collection

Every total relation contains a function with the same domain

For any equivalence relation, there is a choice function that picks a representative from each equivalence class



Type Theoretical Statements

???

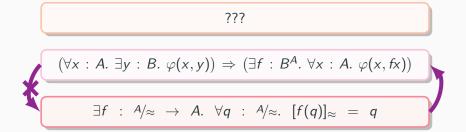
???

$(\forall x : A. \exists y : B. \varphi(x, y)) \Rightarrow (\exists f : B^A. \forall x : A. \varphi(x, fx))$

???

$$(\forall x : A. \exists y : B. \varphi(x, y)) \Rightarrow (\exists f : B^A. \forall x : A. \varphi(x, fx))$$

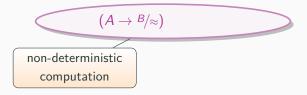
$$\exists f : A \not \approx \rightarrow A. \ \forall q : A \not \approx. \ [f(q)]_{\approx} = q$$



Goal #1: Provide a computational interpretation of a strong variant of AC

Goal #1: Provide a computational interpretation of a strong variant of AC

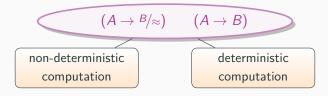
Goal #1: Provide a computational interpretation of a strong variant of AC



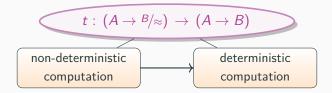
Goal #1: Provide a computational interpretation of a strong variant of AC

 $(A \rightarrow B/\approx)$ $(A \rightarrow B)$ non-deterministic computation

Goal #1: Provide a computational interpretation of a strong variant of AC



Goal #1: Provide a computational interpretation of a strong variant of AC



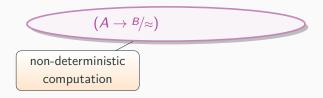
s.t. t reduces in a manner that reflects a choice function.

- Implementation through memoization.
- Stateful computation.

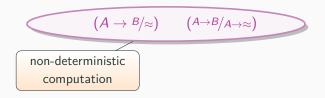
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.

- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.

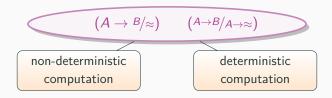
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.



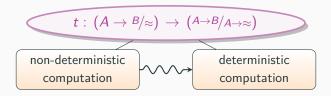
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.



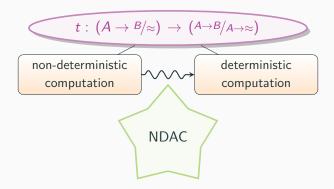
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.



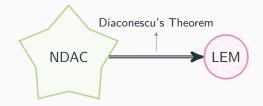
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.



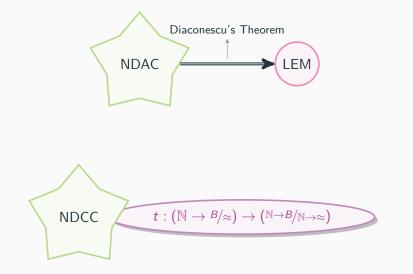
- Implementation through memoization.
- Stateful computation.
- BUT memoizing non-deterministically generates deterministic functions.



Constructivism Weakening



Constructivism Weakening



Goal #2: Implement NDCC

Main features of the framework:

- General framework
 - higher-order abstract syntax
 - models rather than a specific calculus
- Extensible no closed world assumption
- Robust w.r.t. (certain) extensions to the underlying calculus

The Effective Topos

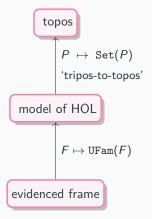
A topos

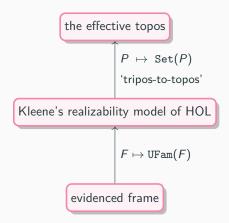
- A categorical model of both set theory and type theory.
 - $\bullet \ \mbox{Objects} \sim \mbox{types}$
 - $\bullet \ \ {\rm Morphisms} \sim {\rm expression}$
- Cartesian closed a model of simply-typed λ -calculus.
- Contains equalizers an internal notion of equality.
- Exhibit an impredicative type of propositions Ω .
- Models a powerful type theory: dependent subset and quotient types and extensionality of entailment.

The effective topos ($\mathcal{E}ff$)

- Has a natural-numbers object
- All functions on the natural numbers are Turing-computable

Constructing the Effective Topos





Evidenced Frame

An evidenced frame is an inhabited set Φ (propositions), a set *E* (evidence codes), and an evidence relation $\phi_1 \xrightarrow{e} \phi_2$ s.t.

Reflexivity An evidence code $e_{id} \in E$

•
$$\phi \xrightarrow{e_{id}} \phi$$

Transitivity A binary operator \cdot ; \cdot : $E \times E \rightarrow E$

•
$$\phi_1 \xrightarrow{e} \phi_2 \implies \phi_2 \xrightarrow{e'} \phi_3 \implies \phi_1 \xrightarrow{e; e'} \phi_3$$

 $\textbf{Conjunction} \ \land : \Phi \times \Phi \to \Phi, \ (\!\! (\cdot, \cdot)\!\!) : E \times E \to E \ \text{and} \ e_{\texttt{fst}}, e_{\texttt{snd}} \in E$

• $\phi_1 \wedge \phi_2 \xrightarrow{e_{\text{fst}}} \phi_1$; $\phi_1 \wedge \phi_2 \xrightarrow{e_{\text{snd}}} \phi_2$ • $\phi' \xrightarrow{e_1} \phi_1 \Longrightarrow \phi' \xrightarrow{e_2} \phi_2 \Longrightarrow \phi' \xrightarrow{(e_1, e_2)} \phi_1 \wedge \phi_2$

Implication $\subset : \Phi \times \Phi \to \Phi, \ (\cdot): E \to E$, and $e_{eval} \in E$

•
$$\phi_1 \land \phi_2 \xrightarrow{e} \phi_3 \implies \phi_1 \xrightarrow{(e)} \phi_2 \subset \phi_3$$

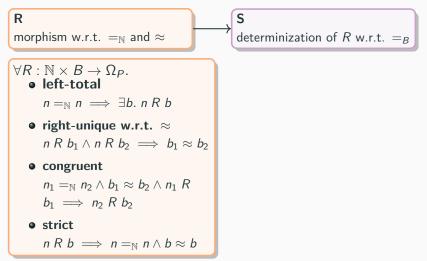
• $\phi_1 \land (\phi_1 \subset \phi_2) \xrightarrow{e_{\text{eval}}} \phi_2$

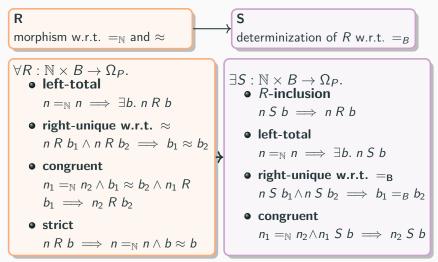
Quantification For $\{\phi_i\}_{i \in I}$, propositions $\bigcap_{i \in I} \phi_i$ and $\bigcup_{i \in I} \phi_i$

• $\forall i. \bigcap_{i \in I} \phi_i \xrightarrow{e_{id}} \phi_i$; $(\forall i. \phi \xrightarrow{e} \phi_i) \Longrightarrow \phi \xrightarrow{e} \bigcap_{i \in I} \phi_i$ • $\forall i. \phi_i \xrightarrow{e_{id}} \bigcup_{i \in I} \phi_i$; $(\forall i. \phi_i \xrightarrow{e} \phi') \Longrightarrow \bigcup_{i \in I} \phi_i \xrightarrow{e} \phi'$

 \mathcal{E} ff exhibits NDCC for B iff the choice predicate is provable in P.

R morphism w.r.t. $=_{\mathbb{N}}$ and \approx





The Hidden Assumption(s) in the Proof of NDCC

- Let v_{tot} be the λ-value that implements totality of R (extracted from the given evidence).
- For each *n*, computing $(v_{tot} n_{\lambda})$ results in an element v_n of $R_{n,b}$ for some *b*.
- For each n, pick one such b to be b_n .
- Define S_{n,b_n} to be the singleton set $\{v_n\}$ if such exists, otherwise let $S_{n,b}$ be empty.

The Hidden Assumption(s) in the Proof of NDCC

- Let v_{tot} be the λ-value that implements totality of R (extracted from the given evidence).
- For each *n*, computing $(v_{tot} \ n_{\lambda})$ results in an element v_n of $R_{n,b}$ for some *b*.
- For each n, pick one such b to be b_n . —

• Define S_{n,b_n} to be the singleton set $\{v_n\}$ if such exists, otherwise let $S_{n,b}$ be empty.

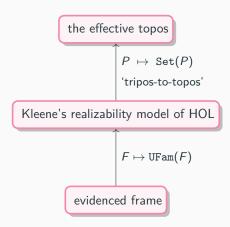
assumes CC in the metatheory

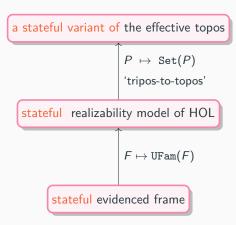
The Hidden Assumption(s) in the Proof of NDCC

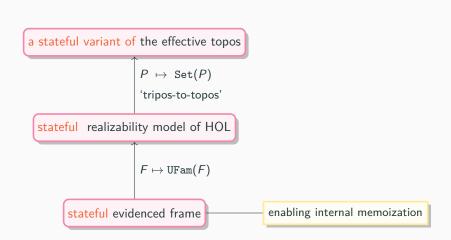
- Let v_{tot} be the λ -value that implements totality of R (extracted from the given evidence).
- For each n, computing $(v_{tot} n_{\lambda})$ results in an element v_n of $R_{n,b}$ for some b. assumes CC
- For each *n*, pick one such *b* to be b_n .
- Define S_{n,b_n} to be the singleton set $\{v_n\}$ if such exists, otherwise let $S_{n,b}$ be empty.

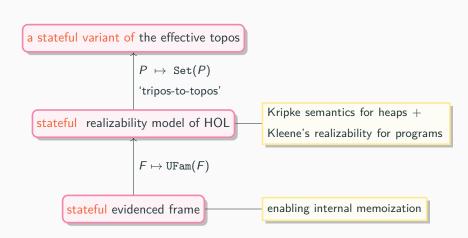
right-uniqueness of Srelies on v_{tot} being deterministic

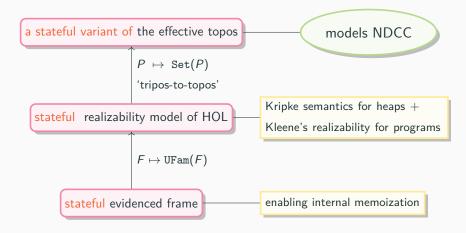
in the metatheory











Naive stateful evidenced frame:

 $h\phi v$ propositions indicate which values in which heaps serve as realizers of ϕ .

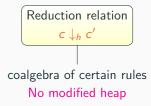
 $\phi_1 \xrightarrow{e} \phi_2$ for all h and v_1 s.t. $h \phi_1 v_1$: e terminates on v_1 under hand returns v_2 and results in a modified h' s.t. $h' \phi_2 v_2$. Naive stateful evidenced frame:

- $h\phi v$ propositions indicate which values in which heaps serve as realizers of ϕ .
- $\phi_1 \xrightarrow{e} \phi_2$ for all h and v_1 s.t. $h \phi_1 v_1$: e terminates on v_1 under hand returns v_2 and results in a modified h' s.t. $h' \phi_2 v_2$.
 - Problem #1: sequential pairing and heap modification.
 - \Rightarrow propositions must be preserved by future heaps.
 - **Problem #2:** ensuring the memoization function exhibits the required behavior under all potential futures.
 - \Rightarrow propositions must be preserved only by well-formed futures.
 - The memoized computation is put into the heap and inputs to are restricted to be λ-encodings of numbers, so the heap can independently verify the memoized data.

While evaluation might modify the heap, we are not concerned with a specific evolvement of the heap, rather all possible futures.

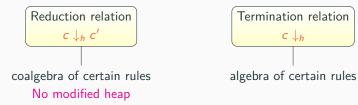
Operational Semantics

While evaluation might modify the heap, we are not concerned with a specific evolvement of the heap, rather all possible futures.



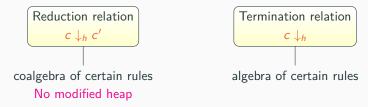
Operational Semantics

While evaluation might modify the heap, we are not concerned with a specific evolvement of the heap, rather all possible futures.



Operational Semantics

While evaluation might modify the heap, we are not concerned with a specific evolvement of the heap, rather all possible futures.



• termination must be preserved by (well-formed) futures

$$\forall h, h', c. h \preceq_{wf} h' \land c \downarrow_h \implies c \downarrow_{h'}$$

• Progress: termination under a well-formed heap ensures reducibility under some future heap

$$\forall h, c. \vdash h \land c \downarrow_h \implies \exists h', c'. h \preceq_{wf} h' \land c \downarrow_{h'} c'$$

 $\begin{array}{l} h \vdash \phi_1 \xrightarrow{e} \phi_2: e \text{ is evidence in heap } h \text{ that } \phi_1 \text{ implies } \phi_2 \\ \forall c_1. \ h \ \phi_1 \ c_1 \implies (e \ c_1 \downarrow_h \land \forall c_2. \ e \ c_1 \downarrow_h \ c_2 \implies h \ \phi_2 \ c_2) \end{array}$

Propositions Relations ϕ between heaps and codes s.t. $\forall h, c. h \phi c \implies val(c) \land \forall h'. h \preceq_{wf} h' \implies h' \phi c$ **Codes** Syntactically-encodable functions $e: C \rightarrow C$. **Evidence** $\phi_1 \xrightarrow{e} \phi_2$: $\forall h. \vdash h \implies h \vdash \phi_1 \xrightarrow{e} \phi_2$. $h(\phi_1 \land \phi_2) \subset \exists c_1, c_2, c = \text{pair } c_1 c_2 \land h \phi_1 c_1 \land h \phi_2 c_2$ **h** $(\phi_1 \subset \phi_2)$ **c** $\exists e. c =$ lambda $e \land \forall h'. h \prec_{wf} h' \Rightarrow h' \vdash \phi_1 \xrightarrow{e}{\rightarrow} \phi_2$ **h** $\bigcap_{i \in I} \phi_i$ **c** $\forall i. h \phi_i$ **c** $\mathbf{h} \bigcup_{i \in \mathbf{I}} \phi_i \mathbf{c} \exists i. h \phi_i \mathbf{c}$

 $\begin{array}{ccc} h \vdash \phi_1 \xrightarrow{e} \phi_2 : e \text{ is evidence in heap } h \text{ that } \phi_1 \text{ implies } \phi_2 \\ \forall c_1. \ h \ \phi_1 \ c_1 \implies (e \ c_1 \downarrow_h \land \forall c_2. \ e \ c_1 \downarrow_h \ c_2 \implies h \ \phi_2 \ c_2) \end{array}$

Propositions Relations ϕ between heaps and codes s.t. $\forall h, c. h \phi c \implies val(c) \land \forall h'. h \preceq_{wf} h' \implies h' \phi c$ **Codes** Syntactically-encodable functions $e: C \rightarrow C$. **Evidence** $\phi_1 \xrightarrow{e} \phi_2$: $\forall h. \vdash h \implies h \vdash \phi_1 \xrightarrow{e} \phi_2$. $h(\phi_1 \land \phi_2) \subset \exists c_1, c_2, c = \text{pair } c_1 c_2 \land h \phi_1 c_1 \land h \phi_2 c_2$ **h** $(\phi_1 \subset \phi_2)$ **c** $\exists e. c =$ lambda $e \land \forall h'. h \prec_{wf} h' \Rightarrow h' \vdash \phi_1 \xrightarrow{e}{\rightarrow} \phi_2$ $\mathbf{h} \bigcap_{i \in \mathbf{I}} \phi_i \mathbf{c} \forall i. h \phi_i \mathbf{c}$ consistent **h** $\bigcup_{i \in I} \phi_i$ **c** $\exists i. h \phi_i$ **c**

The extended code language:

alloc allocation of a new memoization table in the heap.

lookup retrieval of a value at a specific index in the memoization
table in the heap.

$$\begin{split} &h @\ell \mapsto c_f \text{ location } \ell \text{ is allocated to the generator function } c_f \text{ in } h. \\ &n \xrightarrow{h @\ell} c \text{ in the memoization table at location } \ell \text{ in } h, \text{ the input } n \text{ has } \\ &\text{ been memoized to } c. \end{split}$$

- Allocated locations are preserved by futures and have a unique generator function.
- Memoized entries are preserved by futures and are unique.
- Memoized entries agree with the generator function associated with the allocated location.

Proof of NDCC

Proof of NDCC

- Allocate a new memory location ℓ in h whose generator function is the evidence that R is left-total.
- Define S s.t. c is evidence of $S_{n,b}$ under heap h' whenever $n \xrightarrow{h' \otimes \ell} c \wedge h \preceq_{wf} h' \wedge b = Choice_R(n, c, \cdots)$ holds.

Proof of NDCC

- Allocate a new memory location ℓ in h whose generator function is the evidence that R is left-total.
- Define S s.t. c is evidence of $S_{n,b}$ under heap h' whenever $n \xrightarrow{h' \otimes \ell} c \wedge h \preceq_{wf} h' \wedge b = Choice_R(n, c, \cdots)$ holds.

$$\lambda \langle x_{tot}, x_{ru}, x_{cong}, x_{str} \rangle. \qquad \qquad \texttt{let} \ \ell := \texttt{new_table} \ x_{tot} \texttt{ in}$$

$$\begin{array}{c|c} \textbf{R-inclusion} & \lambda x_s. x_s, \\ \hline \textbf{totality} & \lambda x_n. \ell[x_n], \\ \hline \textbf{right-unique} & \lambda \langle x_s, _ \rangle. \texttt{fst} \left(c_{str} \left(\texttt{snd} \left(x_{str} \, x_s \right) \right) \right), \\ \hline \textbf{congruent} & \lambda \langle _, x_s \rangle. x_s \\ \hline \textbf{evidence of the strictness} \\ \textbf{of} \approx \textbf{w.r.t.} =_B \end{array}$$

Future Work

- Eliminate the metatheoretic assumptions.
- Implement stronger variants of the AC:
 - Non-Deterministic Countable Choice.
 - Choice for any set with decidable equality
- Explore other applications of stateful evidenced frames.
 - By storing partially-constructed graphs of numbers, one could create a model in which all countable connected graphs have a spanning tree.
 - A constructive variant of Zorn's Lemma.

Future Work

- Eliminate the metatheoretic assumptions.
- Implement stronger variants of the AC:
 - Non-Deterministic Countable Choice.
 - Choice for any set with decidable equality
- Explore other applications of stateful evidenced frames.
 - By storing partially-constructed graphs of numbers, one could create a model in which all countable connected graphs have a spanning tree.
 - A constructive variant of Zorn's Lemma.

